If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40q+2q^2=0
a = 2; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·2·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*2}=\frac{-80}{4} =-20 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*2}=\frac{0}{4} =0 $
| 3b+9=60 | | -10+d=8-d | | 4a-3+6=6a+4 | | 5×+3y=-8 | | 3+4x=113+-6x | | 2.2x-5.1-4.5x=-1.3x-5.1 | | 10+8-5z=2z-10 | | 56+t=30 | | 1.24=1.03^x | | 8x+7-4=19 | | 37+k=15 | | -9-3w=4+w-1 | | Y=x2-18x+64 | | 2+t=10+2t | | -7-7r=-8r | | 6x-7=138x+56 | | P=(x/3x≤11 | | 7-6u=-8u-9 | | 196=14/9x=1/9 | | 6x-7=13x+9 | | 18+3(3+5x)=15x | | -72=7(2+4k)+3(-7+5k) | | −120=10x= | | 196=14/9,x=1/9 | | b−2=3= | | 4x+5-8=6x-4 | | r–3+ –9=–8 | | (6x-4)+(6x-4)=180 | | -5(5x-2)=81 | | 10(x-1)=-100 | | -8+18=2(2x-9) | | -3.9p-0.75=-0.9(3.6p+1.2) |